Polysomnography (PSG), also known as a sleep study, is a multi-parametric test used in the study of sleep and as a diagnostic tool in sleep medicine. The test result is called a polysomnogram.

Polysomnography is a comprehensive recording of the biophysiological changes that occur during sleep. It is usually performed at night, when most people sleep, though some labs can accommodate shift workers and people with circadian rhythm sleep disorders and do the test at other times of day. The PSG monitors many body functions including brain (EEG), eye movements (EOG), muscle activity or skeletal muscle activation (EMG) and heart rhythm (ECG) during sleep.

Indications

Polysomnography is used to diagnose, or rule out, many types of sleep disorders including narcolepsy, periodic limb movement disorder (PLMD), REM behavior disorder, parasomnias, and sleep apnea. It is often ordered for patients with complaints of daytime fatigue or sleepiness that may be caused by interrupted sleep. Although it is not directly useful in diagnosing circadian rhythm sleep disorders, it may be used to rule out other sleep disorders.

Procedure

For the standard test the patient comes to a sleep lab in the early evening, and over the next 1–2 hours is introduced to the setting and “wired up” so that multiple channels of data can be recorded when he/she falls asleep. The sleep lab may be in a hospital, a free-standing medical office, or in a hotel. A sleep technician should always be in attendance and is responsible for attaching the electrodes to the patient and monitoring the patient during the study.

During the study, the technician observes sleep activity by looking at the video monitor and the computer screen that displays all the data second by second. In most labs the test is completed and the patient is discharged home by 7 a.m. unless a Multiple Sleep Latency Test (MSLT) is to be done during the day to test for excessive daytime sleepiness.

Most recently, physicians may prescribe home studies to enhance patient comfort and reduce expense. The patient is given instructions after a screening tool is used, uses the equipment at home and returns it the next day. The equipment monitors, at a minimum, oxygen saturation.